Answer : The balanced two-half reactions will be,
Oxidation half reaction (anode) : 
Reduction half reaction (cathode) : 
Thus the overall reaction will be,

Explanation :
Voltaic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the galvanic cell or electrochemical cell.
The given redox reaction occurs between the magnesium and cadmium.
In the voltaic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
The balanced two-half reactions will be,
Oxidation half reaction (anode) : 
Reduction half reaction (cathode) : 
Thus the overall reaction will be,

Answer:
B
Explanation:
a force acting upon an object increases that objects acceleration
Answer:
1
The arrow with greater impart is Arrow B
2
The both arrows will feel the same impulse
Explanation:
1. Arrow B since
it used more force to stop itself in a shorter distance.
2. They should feel the same impulse since the both had the same momentum 
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Answer:
14 m/s
Explanation:
u = 0, h = 10 m, g = 9.8 m/s^2
Use third equation of motion
v^2 = u^2 + 2 g h
Here, v be the velocity of ball as it just strikes with the ground
v^2 = 0 + 2 x 9.8 x 10
v^2 = 196
v = 14 m/s