1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
7

A rod is 2m long at temperature of 10oC. Find the expansion of the rod, when the temperature is raised to 80oC. If this expansio

n is prevented, find the stress induced in the material of the rod. Take E = 1.0 x 105 MPa and α = 0.000012 per degree centigrade.
Engineering
1 answer:
Damm [24]3 years ago
8 0

Answer:

ΔL = 1.68 mm

σ = 84 MPa

Explanation:

Thermal expansion is:

ΔL = α ΔT L

Thermal stress is:

σ = α ΔT E

Given:

α = 1.2×10⁻⁵ /°C

E = 1.0×10⁵ MPa

ΔT = 80°C − 10°C = 70°C

L = 2 m

ΔL = (1.2×10⁻⁵ /°C) (70°C) (2 m)

ΔL = 0.00168 m

ΔL = 1.68 mm

σ = (1.2×10⁻⁵ /°C) (70°C) (1.0×10⁵ MPa)

σ = 84 MPa

You might be interested in
Consider an aircraft powered by a turbojet engine that has a pressure ratio of 9. The aircraft is stationary on the ground, held
77julia77 [94]

Answer:

The break force that must be applied to hold the plane stationary is 12597.4 N

Explanation:

p₁ = p₂, T₁ = T₂

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} }

{T_{2}}{} = T_{1} \times \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} } = 280.15 \times \left (9  \right )^{\frac{1.333-1}{1.333} } = 485.03\ K

The heat supplied = \dot {m}_f × Heating value of jet fuel

The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s

The heat supplied = \dot m · c_p(T_3 - T_2)

\dot m = 20 kg/s

The heat supplied = 20*c_p(T_3 - T_2) = 21,350 kJ/s

c_p = 1.15 kJ/kg

T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K

p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa

p₃ = p₂ = 855 kPa

T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K

T₄ = 1413.3 - 204.88 = 1208.42 K

\dfrac{T_5}{T_4}  = \dfrac{2}{1.333 + 1}

T₅ = 1208.42*(2/2.333) = 1035.94 K

C_j = \sqrt{\gamma \times R \times T_5} = √(1.333*287.3*1035.94) = 629.87 m/s

The total thrust = \dot m × C_j = 20*629.87 = 12597.4 N

Therefore;

The break force that must be applied to hold the plane stationary = 12597.4 N.

5 0
3 years ago
Which company introduced the Windows operating system correct answer plz <br>​
grigory [225]

Answer:

I think Microsoft Corporation

3 0
2 years ago
A single fixed pulley is used to lift a load of 400N by the application of an effort of 480N in 10s through a vertical height of
Allushta [10]

Answer:

(a) the velocity ratio of the machine (V.R) = 1

(b) The mechanical advantage of the machine (M.A) = 0.833

(c) The efficiency of the machine (E) = 83.3 %

Explanation:

Given;

load lifted by the pulley, L = 400 N

effort applied in lifting the, E = 480 N

distance moved by the effort, d = 5 m

(a) the velocity ratio of the machine (V.R);

since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.

V.R = distance moved by effort / distance moved by the load

V.R = 5/5 = 1

(b) The mechanical advantage of the machine (M.A);

M.A = L/E

M.A = 400 / 480

M.A = 0.833

(c) The efficiency of the machine (E);

E = \frac{M.A}{V.R} \times 100\%\\\\E = 0.833 \ \times \ 100\%\\\\ E = 83.3 \ \%

4 0
3 years ago
A wire of diameter d is stretched along the centerline of a pipe of diameter D. For a given pressure drop per unit length of pip
JulsSmile [24]

Answer:

Part A: (d/D=0.1)

DeltaV percent=42.6%

Part B:(d/D=0.01)

DeltaV percent=21.7%

Explanation:

We are going to use the following volume flow rate equation:

DeltaV=\frac{\pi * DeltaP}{8*u*l}(R^{4}-r^{4} -\frac{(R^{2}-r^{2})}{ln\frac{R}{r}}^{2})

Above equation can be written as:

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(\frac{r}{R} )^{4}+\frac{(1-(\frac{r}{R} )^{2})}{ln\frac{r}{R}}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(\frac{d}{D} )^{4}+\frac{(1-(\frac{d}{D})^{2})}{ln\frac{d}{D}}^{2})

First Consider no wire i.e d/D=0

Above expression will become:

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0)^{4}+\frac{(1-(0)^{2})}{ln0}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}

Part A: (d/D=0.1)

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0.1)^{4}+\frac{(1-(0.1)^{2})}{ln0.1}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}*0.574

DeltaV percent=\frac{(\frac{\pi*R^{4}*DeltaP}{8*u*l})-\frac{\pi *R^{4}*DeltaP}{8*u*l}*0.574}{\frac{\pi*R^{4}*DeltaP}{8*u*l} }*100

DeltaV percent=\frac{1-0.574}{1}*100

DeltaV percent=42.6%

Part B:(d/D=0.01)

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0.01)^{4}+\frac{(1-(0.01 )^{2})}{ln0.01}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}*0.783

DeltaV percent=\frac{(\frac{\pi *R^{4}*DeltaP}{8*u*l})-\frac{\pi *R^{4}*DeltaP}{8*u*l}*0.783}{\frac{\pi *R^{4}*DeltaP}{8*u*l} }*100

DeltaV percent=\frac{1-0.783}{1}*100

DeltaV percent=21.7%

5 0
3 years ago
In a manufacturing facility, 2-in-diameter brass balls (k = 64.1 Btu/h·ft·°F, rho = 532 lbm/ft^3, and cp = 0.092 Btu/lbm·°F) ini
bekas [8.4K]

Answer:

Explanation:

First we compute the characteristic length and the Biot number to see if the lumped parameter

analysis is applicable.

Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an

analysis, the time to reach a certain temperature is given by the following

From the data in the problem we can compute the parameter, b, and then compute the time for

the ratio (T – T)/(Ti

– T)

4 0
3 years ago
Read 2 more answers
Other questions:
  • Show from the first principles that, for a perfect gas with constant specific heat capacities
    14·1 answer
  • 1. Why is outside air mixed with return air?​
    6·1 answer
  • PLZ HURRY IM ON A TIMER
    6·1 answer
  • A rectangular channel 2 m wide carries 3 m3 /s of water at a depth of 1.2 m. If an obstruction 40 cm wide is placed in the middl
    12·1 answer
  • WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
    8·1 answer
  • Two kilograms of air in a piston-cylinder assembly undergoes an isothermal
    11·1 answer
  • I need a thesis statement about Engineers as Leaders.
    11·1 answer
  • Technician A says that the carpet padding is designed to help reduce noise and vibrations.
    5·1 answer
  • Just some random stufff
    7·1 answer
  • How can the use of local materials improve the standard of living of Filipinos?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!