Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂


The heat supplied =
× Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied =
·
= 20 kg/s
The heat supplied = 20*
= 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K

T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust =
×
= 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.
Answer:
I think Microsoft Corporation
Answer:
(a) the velocity ratio of the machine (V.R) = 1
(b) The mechanical advantage of the machine (M.A) = 0.833
(c) The efficiency of the machine (E) = 83.3 %
Explanation:
Given;
load lifted by the pulley, L = 400 N
effort applied in lifting the, E = 480 N
distance moved by the effort, d = 5 m
(a) the velocity ratio of the machine (V.R);
since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.
V.R = distance moved by effort / distance moved by the load
V.R = 5/5 = 1
(b) The mechanical advantage of the machine (M.A);
M.A = L/E
M.A = 400 / 480
M.A = 0.833
(c) The efficiency of the machine (E);

Answer:
Part A: (d/D=0.1)
DeltaV percent=42.6%
Part B:(d/D=0.01)
DeltaV percent=21.7%
Explanation:
We are going to use the following volume flow rate equation:

Above equation can be written as:


First Consider no wire i.e d/D=0
Above expression will become:


Part A: (d/D=0.1)




DeltaV percent=42.6%
Part B:(d/D=0.01)




DeltaV percent=21.7%
Answer:
Explanation:
First we compute the characteristic length and the Biot number to see if the lumped parameter
analysis is applicable.
Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an
analysis, the time to reach a certain temperature is given by the following
From the data in the problem we can compute the parameter, b, and then compute the time for
the ratio (T – T)/(Ti
– T)