1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
11

A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and

a positive sequence shunt admittance y = j4.4*10^26 S/km. Calculate:(a) Zc, (b) (gl), (c) the exact ABCD parameters for this line.
Engineering
1 answer:
Anni [7]3 years ago
7 0

Answer:

A) 282.34 - j 12.08 Ω

B) 0.0266 + j 0.621 / unit

C)

A = 0.812 < 1.09° per unit

B =  164.6 < 85.42°Ω  

C =  2.061 * 10^-3 < 90.32° s

D =  0.812 < 1.09° per unit

Explanation:

Given data :

Z ( impedance ) = 0.03 i  + j 0.35 Ω/km

positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km

A) calculate Zc

Zc = \sqrt{\frac{z}{y} }  =  \sqrt{\frac{0.03 i  + j 0.35}{j4.4*10^-6 } }    

    = \sqrt{79837.128< 4.899^o}   =  282.6 < -2.45°

hence Zc = 282.34 - j 12.08 Ω

B) Calculate  gl

gl = \sqrt{zy} * d  

 d = 500

 z = 0.03 i  + j 0.35

 y = j4.4*10^-6 S/km

gl =  \sqrt{0.03 i  + j 0.35*  j4.4*10^-6}  * 500

   = \sqrt{1.5456*10^{-6} < 175.1^0} * 500

   = 0.622 < 87.55 °

gl = 0.0266 + j 0.621 / unit

C) exact ABCD parameters for this line

A = cos h (gl) . per unit  =  0.812 < 1.09° per unit ( as calculated )

B = Zc sin h (gl) Ω  = 164.6 < 85.42°Ω  ( as calculated )

C = 1/Zc  sin h (gl) s  =  2.061 * 10^-3 < 90.32° s ( as calculated )

D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )

where :  cos h (gl)  = \frac{e^{gl} + e^{-gl}  }{2}

             sin h (gl) = \frac{e^{gl}-e^{-gl}  }{2}

     

You might be interested in
If block A of the pulley system is moving downward at 6 ft&gt;s while block C is moving down at 18 ft&gt;s, determine the relati
kramer

Answer:

Explanation:

The detailed steps and appropriate calculation with analysis is as shown in the attachment.

3 0
3 years ago
LAB 3.3 – Working with String Input and Type CastingStep 1: RemovefindErrors.cppfrom the project and add thepercentage.cppprogra
jolli1 [7]

Answer:

// Program is written in C++ Programming Language

// Comments are used for explanatory purpose

#include<iostream>

using namespace std;

int main ()

{

// Variable declaration

string name;

int numQuestions;

int numCorrect;

double percentage;

//Prompt to enter student's first and last name

cout<<"Enter student's first and last name";

cin>>name; // this line accepts input for variable name

cout<<"Number of question on test"; //Prompt to enter number of questions on test

cin>> numQuestions; //This line accepts Input for Variable numQuestions

cout<<"Number of answers student got correct: "; // Prompt to enter number of correct answers

cin>>numCorrect; //Enter number of correct answers

percentage = numCorrect * 100 / numQuestions; // calculate percentage

cout<<name<<" "<<percentage<<"%"; // print

return 0;

}

Explanation:

The code above calculates the percentage of a student's score in a certain test.

The code is extracted from the Question and completed after extraction.

It's written in C++ programming language

4 0
4 years ago
For which of 'water' flow velocities at 200C can we assume that the flow is incompressible ? a.1000 km per hour b. 500 km per ho
ad-work [718]

Answer:d

Explanation:

Given

Temperature=200^{\circ}\approc 473 K

Also \gamma for air=1.4

R=287 J/kg

Flow will be In-compressible when Mach no.<0.32

Mach no.=\frac{V}{\sqrt{\gamma RT}}

(a)1000 km/h\approx 277.78 m/s

Mach no.=\frac{277.78}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.63

(b)500 km/h\approx 138.89 m/s

Mach no.=\frac{138.89}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.31

(c)2000 km/h\approx 555.55 m/s

Mach no.=\frac{555.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=1.27

(d)200 km/h\approx 55.55 m/s

Mach no.=\frac{55.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.127

From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.

5 0
3 years ago
A 4-stroke Diesel engine with a displacement of Vd = 2.5x10^-3m^3 produces a mean effective pressure of 6.4 bar at the speed of
yKpoI14uk [10]

Answer:

The power developed by engine is 167.55 KW

Explanation:

Given that

V_d=2.5\times 10^{-3} m^3

Mean effective pressure = 6.4 bar

Speed = 2000 rpm

We know that power is the work done per second.

So

P=6.4\times 100\times 2.5\times 10^{-3}\times \dfrac{2\pi \times2000}{120}

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.

P=167.55 KW

So the power developed by engine is 167.55 KW

4 0
3 years ago
If a worksite includes more than one set of management and workers, who should have access to the information, training, and con
Elden [556K]

Answer:

In a work site with more than one set of management and workers the Health and  safety officers in each set  should have access to the information, training and controls needed to avoid workplace accidents

Explanation:

The primary aim of a health and  safety officer in a workplace is to prevent accidents,injuries and work-related sickness from occurring in the work site by creating and implementing health and safety policies according to international standards and also ensure that these policies are implemented  by the sets of management and workers/staffs of the work site.  to achieve these they therefore should have access to the information,training and controls needed to avoid workplace accidents

4 0
3 years ago
Read 2 more answers
Other questions:
  • There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
    10·1 answer
  • . Carly's Catering provides meals for parties and special events. In Chapter 2, you wrote an application that prompts the user f
    10·1 answer
  • A spherical seed of 1 cm diameter is buried at a depth of 1 cm inside soil (thermal conductivity of 1 Wm-1K-1) in a sufficiently
    14·1 answer
  • 6
    5·1 answer
  • For a very rough pipe wall the friction factor is constant at high Reynolds numbers. For a length L1 the pressure drop over the
    9·1 answer
  • What should you consider when choosing the type of hearing protection you use?
    15·1 answer
  • Difference between star and delta connection​
    10·2 answers
  • There are some sections of the SDS that are not mandatory.
    11·1 answer
  • Who wanna rp?????????????????????????!
    15·1 answer
  • It is important to follow correct procedures when running electrical cables next to data cables in order to protect against whic
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!