1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Degger [83]
4 years ago
12

In a food processing facility, a spherical container of inner radius r1 = 40 cm, outer radius r2 = 41 cm, and thermal conductivi

ty k = 1.5 W/m·K is used to store hot water and to keep it at 100°C at all times. To accomplish this, the outer surface of the container is wrapped with a 800-W electric strip heater and then insulated. The temperature of the inner surface of the container is observed to be nearly 120°C at all times. Assuming 10 percent of the heat generated in the heater is lost through the insulation, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the container, (b) obtain a relation for the variation of temperature in the container material by solving the differential equation, and (c) evaluate the outer surface temperature of the container. Also determine how much water at 100°C this tank can supply steadily if the cold water enters at 20°C

Engineering
1 answer:
Rashid [163]4 years ago
5 0

Answer:

attached below

Explanation:

You might be interested in
Who wants fight with me
vladimir1956 [14]
Yea, ‘Who wants to fight with me’
3 0
3 years ago
Determine (with justification) whether the following systems are (i) memoryless, (ii) causal, (iii) invertible, (iv) stable, and
lina2011 [118]

Answer:

a.

y[n] = x[n] x[n-1]  x[n+1]

(i) Memory-less - It is not memory-less because the given system is depend on past or future values.

(ii) Causal - It is non-casual because the present value of output depend on the future value of input.

(iii) Invertible - It is invertible and the inverse of the given system is \frac{1}{x[n] . x[n-1] x[n+1]}

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is not time invariant because the system is multiplying with a time varying function.

b.

y[n] = cos(x[n])

(i) Memory-less - It is memory-less because the given system is not depend on past or future values.

(ii) Causal - It is casual because the present value of output does not depend on the future value of input.

(iii) Invertible - It is not invertible because two or more than two input values can generate same output values .

For example - for x[n] = 0 , y[n] = cos(0) = 1

                       for x[n] = 2\pi , y[n] = cos(2\pi) = 1

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is time invariant because the system is not multiplying with a time varying function.

3 0
3 years ago
Which option identifies the type of power system Tommy will design in the following scenario?
Sedaia [141]

Answer:

diagram of an electrical curcuit

an sketch of an HVAC system

Also 3D image of a hydrualic piston

se

7 0
3 years ago
A 900 kg car is accelerated from a speed of 10 m/s to 30 m/s. An estimated heat loss of 20 BTU's occurs during the acceleration.
Strike441 [17]

Answer:

Work = 651,1011 kJ

Explanation:

Let´s take the car as a system in order to apply the first law of thermodynamics as follows:

E_{in}- E_{out}=E_{system,final}- E_{system,initial}

Where

E_{in}- E_{out}=(Q_{in}-Q_{out})_{heat}+(W_{in}-W_{out})_{work}+(Em_{in}-Em_{out})_{mass}

And considering that there is no mass transfer and that the only energy flows that interact with the system are the heat losses and the work needed to move the car we have:

E_{in}- E_{out}=-Q_{out}+W_{in}

Regarding the energy system we have the following:

E_{system,final}- E_{system,initial}=(U_{f}-U_{i})_{internal}+(1/2m(V^2_{f}-V^2_{i}))_{kinetic}+(mg(h_{f}-h_{i}))_{potential}

By doing the calculations we have:

E_{system,final}- E_{system,initial}=[0,1*900]_{internal}+[0,5*900(30^2-10^2)/1000)_{kinetic}+(900*10*(20-0)/1000)_{potential}\\E_{system,final}- E_{system,initial}=90+360+180=630kJ

Consider that in the previous calculation, the kinetic and potential energy terms were divided by 1.000 to change the units from J to kJ.

Finally, the work needed to move the car under the required conditions is calculated as follows:

W_{in}=Q_{out}+E_{system,final}- E_{system,initial}\\W_{in}=21,1011+630=651,1011kJ

Consider that in the previous calculation, the heat loss was changed previously from BTU to kJ.

4 0
3 years ago
What is the best countermeasure against social engineering?
Mkey [24]

Answer:

Hello Monk7294!

Answer:

Employee education

Explanation:

The most important countermeasure for social engineering is employee education. All the employees should be trained to keep confidential data safe. As a part of security education, organizations have to provide timely orientation about their security policy to new employees. The security policy should address the consequences of the breaches.

<em>- I Hope this helps Have an awesome day!</em>

<em>~ Chloe marcus <3</em>

3 0
3 years ago
Other questions:
  • Consider a torsionally elastic (GJ = 8000 lb-in2) wind tunnel model of a uniform wing, the ends of which are rigidly fastened (f
    11·2 answers
  • 1. Describe the basic principle of operation of a bipolar junction transistor including
    13·1 answer
  • Mile markers appear as green signs.
    6·1 answer
  • 4. (3 pts) Sketch cylinder/cylinder head configurations to show the differences between PFI and GDI gasoline injection systems.
    5·2 answers
  • The surface energy of a single crystal depends on crystallographic orientation. Does this surface energy increase or decrease wi
    5·1 answer
  • A long cylindrical conductor whose axis is coincident with the z-axis has a radius a and carries a current characterized by a cu
    7·1 answer
  • Two aerial photographs were taken 30 seconds apart over one east-bound lane of l-80 near Grand Island, NE. The following results
    12·1 answer
  • ASAP PLEASEEEE HELP : Eccentricity, Inclination, True anomaly, Argument of perigee, Right ascension or the ascending node, Semi-
    11·1 answer
  • U 4. Find 2 bridges in the US and answer the following:
    15·1 answer
  • In alternating current, how often does the current alternate between negative and positive?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!