Answer:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
Explanation:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
It is composed of the following six parts:
1. Skull (22 bones)
2. Ossicles of the middle ear
3. Hyoid bone
4. Rib cage
5. Sternum
6. Vertebral column
The axial region of the body forms the vertical axis of the body as the axial skeleton supports the head, neck, back, and chest.
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use



When you touch an object and heat flows OUT of it, INTO your finger, you say the object feels hot.
When you touch an object and heat flows INTO it, OUT of your finger, you say the object feels cold.
If the object has the same temperature as your finger ... <em>around the mid-90s</em> ... then no heat flows in or out of your finger when you touch the object, and the object doesn't feel hot or cold.
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.