I would say B but I have no clue
Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V
Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
Answer:
ieces A and B must also have the same type of charges
Explanation:
In electrostatics, charges of the same sign repel and charges of different signs attract.
If we apply this to our case, we have that part A and C repel each other, therefore they have the same type of charge.
Also part A and C repel each other, therefore they have the same type of charge.
If we use the transitive property of mathematics, pieces A and B must also have the same type of charges
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.