The concentration of a dextrose solution prepared by diluting 14 ml of a 1.0 M dextrose solution to 25 ml using a 25 ml volumetric flask is 0.56M.
Concentration is defined as the number of moles of a solute present in the specific volume of a solution.
According to the dilution law, the degree of ionization increases on a dilution and it is inversely proportional to the square root of concentration. The degree of dissociation of an acid is directly proportional to the square root of a volume.
M₁V₁=M₂V₂
Where, M₁=1.0M, V₁=14ml, M₂=?, V₂=25ml
Rearrange the formula for M₂
M₂=(M₁V₁/V₂)
Plug all the values in the formula
M₂=(1.0M×14 ml/25 ml)
M₂=14 M/25
M₂=0.56 M
Therefore, the concentration of a dextrose solution after the dilution is 0.56M.
To know more about dilution
brainly.com/question/18566203
#SPJ4
Answer:
Element with 6s subshell
Explanation:
Reactivity of an element depends on the electronic configuration and position of element in the periodic table as reactivity increases as we go down the periodic table.
This is so because number of shell increases as move down the periodic table and the last electron is further away from the nucleus.
Element with 6s subshell is the largest among 3s and 4s subshell and has more number of shells so it will react more than 3s and 4s subshell.
Hence, the correct answer is "Element with 6s subshell".
Answer:
Ratio is 1:1
Explanation:
I do not see any coefficients infront of the reactants and the products, therefore, we can automatically assume that every reactant and product is 1 mole. Don't get confused by the 4 off the O. It just means that 1 mole of sulfate has 1 zinc and 4 oxygens.
Before the bullet is fired the momentum is Zero because nothing is moving but once the bullet is shot the momentum increases because of the movement of the bullet moving forward.
If you know the Table of elements you can see it on.