Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1
Answer:
5070
Explanation:
add them up and then you get <em>your</em><em> </em><em>answers</em><em> </em>