Yup, I think you add all of them
The answer is B.
Temperature is just another term for the average kinetic energy of a substance.
Answer:
a = change in v / change in time
= (5.2 - 11) / 3.1
= -1.87 m/s^2
Explanation:

GiveN:
- Initial velocity = 9.8 m/s²
- Accleration due to gravity = -9.8 m/s²
- Time taken = 1 s
To FinD:
- Final velocity of the ball?
Step-by-step Explanation:
Using the first Equation of motion,
⇒ v = u + gt
⇒ v = 9.8 + -9.8(1)
⇒ v = 0 m/s
The final velocity is hence <u>0</u><u> </u><u>m</u><u>/</u><u>s</u><u>.</u>
<h3>
Note:</h3>
- While solving questions of under gravity motions using equations of motion, remember the sign convection to avoid mistakes.
- You can consider positive above the ground and negative for towards it.
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m