-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.
If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy. So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.
In fact, this isn't even a "result". The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.
If the system is 'open', then energy can come in and go out. If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.
Answer:
²₁H + ³₂He —> ⁴₂He + ¹₁H
Explanation:
From the question given above,
²₁H + ³₂He —> __ + ¹₁H
Let ⁿₐX be the unknown.
Thus the equation becomes:
²₁H + ³₂He —> ⁿₐX + ¹₁H
We shall determine, n, a and X. This can be obtained as follow:
For n:
2 + 3 = n + 1
5 = n + 1
Collect like terms
n = 5 – 1
n = 4
For a:
1 + 2 = a + 1
3 = a + 1
Collect like terms
a = 3 – 1
a = 2
For X:
n = 4
a = 2
X =?
ⁿₐX => ⁴₂X => ⁴₂He
Thus, the balanced equation is
²₁H + ³₂He —> ⁴₂He + ¹₁H
Answer:
d.Energy as heat transferred into an object is determined by the amount of work done on the object.
Explanation:
Answer: The principle of conservation of energy, angular speed and centripetal force
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .