Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
Carbon has the highest first ionization energy because it is the topmost atom on the periodic table
Answer:
The enthalpy for given reaction is 232 kilo Joules.
Explanation:
...[1]
..[2]
..[3]
..[4]
2 × [2] + [3] - [1] ( Using Hess's law)



The enthalpy for given reaction is 232 kilo Joules.
(26) All atoms area...<span><span>with the number of protons equaling the number of electrons
</span>(27) </span>The particles that are found in the nucleus of an atom are...<span> protons and neutrons.
(28) </span>As a consequence of the discovery of the nucleus by Rutherford, which model of the atom is thought to be true?...<span>Protons. electrons, and neutrons are evenly distributed throughout the volume of the atom.
(29) </span>The nucleus of an atom is...<span>the central core and is composed of protons and neutrons</span>.