To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
Answer:
Q = 282,000 J
Explanation:
Given that,
The mass of liquid water, m = 125 g
Temperature, T = 100°C
The latent heat of vaporization, Hv = 2258 J/g.
We need to find the amount of heat needed to vaporize 125 g of liquid water. We can find it as follows :

or
Q = 282,000 J
So, the required heat is 282,000 J
.
Alright well the Answer to your question is A). Screw
Hope this helps have a nice day : )
If u want i can explain why
Answer:
The value is
Explanation:
From the question we are told that
The mass of the car is
The acceleration is 
Generally the net force applied on the rope is mathematically represented as

Here W is the weight of the car which is evaluated as
=> 
=> 
Generally the net force can also be mathematically represented as
So

=> 
=>