-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. The type of machine that a wire cutter pliers is classified is a simple machine. When we say simple machine, this is the type of machine that is considered basic wherein you need to apply force for it to function. Hope this helps.
Answer:
The kinetic energy of the particle will be 12U₀
Explanation:
Given that,
A particle is launched from point B with an initial velocity and reaches point A having gained U₀ joules of kinetic energy.
Constant force = 12F
According to question,
The kinetic energy is
....(I)
Constant force = 12F
A resistive force field is now set up ,
Resistive force is given by,

When the particle moves from point B to point A then,
We need to calculate the kinetic energy
Using formula for kinetic energy

Put the value of 

Now, from equation (I)

Hence, The kinetic energy of the particle will be 12U₀.
Answer:Hydrostatic
Explanation: I think this is the answer, not sure. Sorry
Answer:
1.0s
Explanation:
distance = 1/2 × acceleration × time2 + intial speed × time