Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
That’s an atom
I hope that helped
Answer:
= 3521m/s
The tangential speed is approximately 3500 m/s.
Explanation:
F = m * v² ÷ r
Fg = (G * M * m) ÷ r²
(m v²) / r = (G * M * m) / r²
v² = (G * M) / r
v = √( G * M ÷ r)
G * M = 6.67 * 10⁻¹¹ * 5.97 * 10²⁴ = 3.98199 * 10¹⁴
r = 32000km = 32 * 10⁶ meters
G * M / r = 3.98199 * 10¹⁴ ÷ 32 * 10⁶
v = √1.24 * 10⁷
v = 3521.36m/s
The tangential speed is approximately 3500 m/s.
<span>from what i know the force of gravity and its effects on objects, regardless of their mass, fall to the ground at the same rate.</span>
Answer:
The ball will continue to move at a constant speed forever until another force stops it.
Explanation:
Newton's first law of motion can be seen as a law of inertia. It explains that an object at rest or in a state of uniform motion will remain in that state unless it is acted upon by an external force.
Following the above, when the ball is thrown into space, the ball will continue to move with the velocity with which it was thrown until it comes in contact with another object that stops it. If this does not happen, it will continue to drift forever at that velocity.