Given Information:
Radius = ra = 2.60 cm = 0.026 m
Density = J = 15.0 nC/m
change in potential difference = ΔV = 200 V
Required Information:
Distance = d = ?
Answer:
distance = 0.088 m
Explanation:
As we know
ΔV = Vb - Va = J/4πε₀*ln(rb/ra)
Where ra and rb is the point where potential difference is Va and Vb respectively
1/4πε₀ = 9x10⁹ N.m²/C²
We want to find the distance d = rb - ra
ΔV = J/4πε₀*ln(rb/ra)
200 = 9x10⁹*15x10⁻⁹*ln(rb/ra)
200/135 = ln(rb/ra)
1.48 = ln(rb/ra)
taking e on both sides yields
e^(1.48) = rb/ra
4.39 = rb/ra
rb = 4.39*0.026
rb = 0.114 m
Therefore, the required distance is
d = rb - ra
d = 0.114 - 0.026
d = 0.088 m
Therefore, the other probe must be placed 0.088 m from the surface so that the voltmeter reads 200 V
Gallium is a chemical element with symbol Ga and atomic number 31. Elemental gallium does not occur in free form in nature, but as the gallium(III) compounds that are in trace amounts in zinc ores and in bauxite.
A b and c its so simple bro send it 23-89
Answer:
Granite is an excellent building material that provides some outstanding interior design opportunities whilst being incredibly sturdy and reliable. It has become one of the most popular building materials in modern construction, from kitchen surfaces through to paving slabs.You Can Expect Durability and Longevity. Firstly, marble is so popular around the world because of its durability in a wide variety of weather conditions. Structures that are over hundreds of years old made from marble are still standing to this day, and look as pristine as they day they were crafted.
Explanation:
Answer:
KE =
m
Explanation:
In the generation of energy from hydroelectric power station, the motion of water, and the turbines are paramount. The falling flowing water turns the blades of the turbine, which in-turn causes the movement of a coil within a strong magnetic field.
The motion of the coil which cuts the strong magnetic field induces current. Thus, the system generates electrical energy.
The equation that links kinetic energy (KE), mass (m) and speed (v) can be expressed as:
KE =
m