Answer:
As we have already discussed earlier, motion is the state of change in position of an object over time. It is described in terms of displacement, distance, velocity, acceleration, time and speed. Jogging, driving a car, and even simply taking a walk are all everyday examples of motion. The relations between these quantities are known as the equations of motion.
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if <em>all</em> of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.
Answer:
The impulse experienced by the car is 52,500 kg.m/s.
Explanation:
Given;
mass of the car, m = 1500 kg
initial velocity of the car, u = 55 m/s
final velocity of the car, v = 90 m/s
The impulse experienced by the car is the change in linear momentum, calculated as follows;
J = ΔP = mv - mu
ΔP = m(v - u)
ΔP = 1500(90 - 55)
ΔP = 52,500 kg.m/s
Therefore, the impulse experienced by the car is 52,500 kg.m/s.
you clap your hands you convert kinetic energy into a potential energy