Answer:
The correct statement is "The electric field is directed toward the electron and has a magnitude of
".
Explanation:
According to Coulomb's law, the magnitude of the electric field due to a static point charge q at a point r distance away from it is given by

- k is the Coulmob's constant.
The direction of the electric field along the line joining the charge and the point where electric field is to be found and it is directed from positive charge to negative charge.
Conventionally, we assume a positive test charge placed at the point where electric field is to be found, the test charge has very small charge such that its charge does not affect the electric field due to the given charge.
The charge on the electron = -e.
The electric field due to an electron is given by

The direction of this electric field is from positive test charge, placed at the point where electric field is to be found, towards the electron along the line joining the two.
Thus, the correct statement is "The electric field is directed toward the electron and has a magnitude of
".
Answer:
E = 5291.00 N/C
Explanation:
Expression for capacitance is

where
A is area of square plate
D = DISTANCE BETWEEN THE PLATE




We know that capacitrnce and charge is related as


v = 9.523 V
Electric field is given as

= 
E = 5291.00 V/m
E = 5291.00 N/C
Explanation:
Wave is defined as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium.
The velocity of wave is equal to the product of its wavelength and frequency (number of vibrations per second). Longitudinal waves like sound waves travel through a medium.
Therefore, a wave move from a layer of high velocity to that of a lower velocity the wavelength changes (that is, decreases) as it moves.
Equation: Mass x Velocity = Momentum
Answer: 93 x 13 = 1,209