1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
3 years ago
7

Three equal point charges, each with charge 1.45 μCμC , are placed at the vertices of an equilateral triangle whose sides are of

length 0.700 mm . What is the electric potential energy UUU of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.)
Physics
1 answer:
LUCKY_DIMON [66]3 years ago
7 0

Answer:

U = 80.91 J

Explanation:

In order to calculate the electric potential energy between the three charges you use the following formula:

U=k\frac{q_1q_2}{r_{1,2}}                  (1)

k: Coulomb's constant = 8.98*10^9Nm^2/C^2

q1: q2 charge

r1,2: distance between charges 1 and 2.

For the three charges you have:

U_T=k\frac{q_1q_2}{r_{1,2}}+k\frac{q_1q_3}{r_{1,3}}+k\frac{q_2q_3}{r_{2,3}}           (2)

You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:

q = 1.45μC = 1.45*10^-6C

r = 0.700mm = 0.700*10^-3m

U_T=3k\frac{q^2}{r}=3(8.98*10^9Nm^2/C^2)\frac{(1.45*10^{-6}C)}{0.700*10^{-3}m}\\\\U_T=80.91J

The electric potential energy between the three charges is 80.91 J

You might be interested in
Use the table below to answer the following questions. Substance Specific Heat (J/g•°C) water 4.179 aluminum 0.900 copper 0.385
lbvjy [14]

1. -8.78 \cdot 10^5 J

The energy lost by the water is given by:

Q=m C_s \Delta T

where

m = 3.0 kg = 3000 g is the mass of water

Cs = 4.179 J/g•°C is the specific heat

\Delta T=10.0C-80.0C=-70.0 C is the change in temperature

Substituting,

Q=(3000 g)(4.179 J/gC)(-70.0 C)=-8.78 \cdot 10^5 J

2. 3.24 \cdot 10^4 J

The energy added to the aluminium is given by:

Q=m C_s \Delta T

where

m = 0.30 kg = 300 g is the mass of aluminium

Cs = 0.900 J/g•°C is the specific heat

\Delta T=150.0 C-30.0C =120.0 C is the change in temperature

Substituting,

Q=(300 g)(0.900 J/gC)(120.0 C)=3.24 \cdot 10^4 J

3a. -5.6^{\circ}C

The temperature change of the water is given by

\Delta T=\frac{Q}{m C_s}

where

Q = -232 kJ=-2.32\cdot 10^5 J is the heat lost by the water

m=10.0 kg=10000 g is the mass of water

Cs = 4.179 J/g•°C is the specific heat

Substituting,

\Delta T=\frac{-2.32\cdot 10^5 J}{(10000g)(4.179 J/gC)}=5.6^{\circ}C

3b. +10.2^{\circ}C

The temperature change of the copper is given by

\Delta T=\frac{Q}{m C_s}

where

Q = 1.96 kJ=1960 is the heat added to the copper

m= 500 g is the mass of copper

Cs = 0.385 J/g•°C is the specific heat

Substituting,

\Delta T=\frac{1960 J}{(500g)(0.385 J/gC)}=10.2^{\circ}C

4. 42.9 g

The mass of the water sample is given by

m=\frac{Q}{C_S \Delta T}

where

Q=4300 J is the heat added

\Delta T=39 C-15 C=24C is the temperature change

Cs = 4.179 J/g•°C is the specific heat

Substituting,

m=\frac{4300 J}{(4.179 J/gC)(24 C)}=42.9 g

5. 115.5 J

The heat used to heat the copper is given by:

Q=m C_s \Delta T

where

m = 5.0 g is the mass of copper

Cs = 0.385 J/g•°C is the specific heat

\Delta T=80.0 C-20.0C =60.0 C is the change in temperature

Substituting,

Q=(5.0 g)(0.385 J/gC)(60.0 C)=115.5 J

6. 0.185 J/g•°C

The specific heat of iron is given by:

C_s = \frac{Q}{m \Delta T}

where

Q = -47 J is the heat released by the iron

m = 10.0 g is the mass of iron

\Delta T=25.0-50.4 C=-25.4 C is the change in temperature

Substituting,

C_s = \frac{-47 J}{(10.0 g)(-25.4 C)}=0.185 J/gC

8 0
3 years ago
What relation does the boiling point of an amine have to a similar hydrocarbon?
den301095 [7]

Answer:

Amine have higher boiling points than hydrocarbons.

Explanation:

Primary, secondary and tertiary amines have higher boiling points than hydrocarbons because they can engage in intermolecular hydrogen bonding.

Amines has three classes

1. Primary amines

2. Secondary amines

3. Tertiary amines

All this classes of amines have higher boiling point than hydrocarbons due to C-N bond in them

This is because amines can engage in hydrogen bonding with water, amines of low molar mass are quite soluble in water.

Amines are having higher boiling points than hydrocarbons, as C-N bond in amines is more polar than a C-C bond in hydrocarbons. Due to the polar nature of amines, it forms intermolecular H-bonds and exists as associated molecules.

5 0
3 years ago
Read 2 more answers
Sound and light are both found as _____, with a variety of ____. The sun, a source of light waves specifically, releases a type
Novosadov [1.4K]

Answer:

Waves; wavelength; electromagnetic energy; ultraviolet light.

Explanation:

Sound are mechanical waves that are highly dependent on matter for their propagation and transmission.

Sound travels faster through solids than it does through either liquids or gases.

Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.

Hence, sound and light are both found as waves, with a variety of wavelength. The sun, a source of light waves specifically, releases a type of electromagnetic energy. It can be found as UVA or UVB types. These lights give off different levels of ultraviolet light, some of wich can be harmful.

Additionally, the ultraviolet spectrum is divided into three categories and these are; UVA, UVB and UVC.

6 0
2 years ago
Find the electric energy density between the plates of a 225-μF parallel-plate capacitor. The potential difference between the p
PSYCHO15rus [73]

Answer:

Energy density will be 14.73 J/m^3

Explanation:

We have given capacitance C=225\mu F=225\times 10^{-6}F

Potential difference between the plates = 365 V

Plate separation d = 0.200 mm 0.2\times 10^{-3}m

We know that there is relation between electric field and potential

E=\frac{V}{d}, here E is electric field, V is potential and d is separation between the plates

So E=\frac{V}{d}=\frac{365}{0.2\times 10^{-3}}=1825000N/C

Energy density is given by E=\frac{1}{2}\varepsilon _0E^2=\frac{1}{2}\times 8.85\times 10^{-12}\times (1.825\times 10^6)^2=14.73J/m^3

5 0
2 years ago
Which of the following is a strength training option?
Vilka [71]

Answer:

D. All of the above

PLZ MARK ME AS BRAINLEIST ;)

5 0
2 years ago
Read 2 more answers
Other questions:
  • An object starts at rest then accelerates at a rate of 5m/s^2 for 1 second and then 2m/s^2 for 2 seconds. What is the average ac
    10·1 answer
  • Quick Physics Review Questions!!
    15·1 answer
  • Which statement best describes the interaction between earths magnetosphere and solar wind
    9·2 answers
  • Why does a sheet of sandpaper become warm when you rub it against a wooden board?
    11·2 answers
  • Suppose you apply a flame to heat 1 liter of water and its temperature rises by 3 C. If you apply the same flame for the same le
    8·1 answer
  • planets A & B are near each other but there is a large difference in their temperatures using the data in the table explain
    12·1 answer
  • 57. A red ball (m= 10 kg) is moving at 3 m/s. A green ball (m = 8 kg) is moving at 3.5 m/s. Which ball has more
    7·1 answer
  • The cart travels the track again and now experiences a constant tangential acceleration from point A to point C. The speeds of t
    12·1 answer
  • On a horizontal axis whose unit is the meter, a linear load ranging from 0 to 1 ma a linear load distribution = 2 nC / m.
    6·1 answer
  • What is measurement?<br>​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!