A. As pressure on the gas increases, the volume and temperature will both decrease
Cation and an anion the differences in charge make them attracted to each other
M1v1=m2v2
m2=(m1v1)/v2
Where m is the molarities and v is the volumes
<span>m2=(25.0*0.500)/53.5
m2=12.5/53.5
m2=0.2336
by rounding off:
m2=0.234 M
so the answer is C: 0.234 M</span>
Answer:
cesium
In particular, cesium (Cs) can give up its valence electron more easily than can lithium (Li). In fact, for the alkali metals (the elements in Group 1), the ease of giving up an electron varies as follows: Cs > Rb > K > Na > Li with Cs the most likely, and Li the least likely, to lose an electron
Explanation:
Answer:
This question is incomplete, the complete question is:
Nancy and Hiyang are training for a race. They entered some of their training notes in a chart. Which information should be added to the chart in order find out who ran a greater distance?
The answer is C). the units used to measure distance each day
Explanation:
According to the question, Nancy and Hiyang are training for a race that involves them recording the distance they ran in a chart. Distance, as a quantity, is measured using different S.I units like metres, kilometers, miles, centimeters, etc.
However, in order to accurately discover whether Nancy or Hiyang ran a greater distance as recorded in their chart, the units used to measure distance each day must be included. This is because the unit of a quantity determines how big or small it is in comparison to another. For example, 20metres is not the same as 20centimetres.
If the unit they used in measuring their distance is not included, it will be impossible to tell what is being measured, talkless of who ran a greater distance