Answer:
the correct answere to that is q
Burning Mg in the air and reacting with O2 forming a white powder of MnO
So the equation is going to be:
Mn + O2 ⇒ MnO (this equation is not conserved)
to make it equilibrium:
1- First we should put 2Mno to equal the O2 on both sides.
So it will be:
Mg + O2⇒ 2MgO
2- Second we should put 2Mn to equal the Mn on both sides.
2Mg + O2⇒ 2MgO (this equation is conserved)
After putting the physical states the final equilibrium equation is going to be:
Δ
2Mg(s) + O2(g)⇒ 2MgO(s)
Answer:
chloride and sodium.
Explanation:
These two make up over 90% of all dissolved ions in seawater.
mark me brainliest
Answer:
chlorine has higher ionization than carbon
Explanation:
Chlorine is only one row below carbon, but it is three columns to the right in this case the IP of chlorine would be predicted to be greater than the IP of carbon.
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.