<span>0.0165 m
The balanced equation for the reaction is
AgNO3 + MgCl2 ==> AgCl + Mg(NO3)2
So it's obvious that for each Mg ion, you'll get 1 AgCl molecule as a product. Now calculate the molar mass of AgCl, starting with looking up the atomic weights.
Atomic weight silver = 107.8682
Atomic weight chlorine = 35.453
Molar mass AgCl = 107.8682 + 35.453 = 143.3212 g/mol
Now how many moles were produced?
0.1183 g / 143.3212 g/mol = 0.000825419 mol
So we had 0.000825419 moles of MgCl2 in the sample of 50.0 ml. Since concentration is defined as moles per liter, do the division.
0.000825419 / 0.0500 = 0.016508374 mol/L = 0.016508374 m
Rounding to 3 significant figures gives 0.0165 m</span>
moles NaOH = c · V = 0.1973 mmol/mL · 29.43 mL = 5.806539 mmol
moles H2SO4 = 5.806539 mmol NaOH · 1 mmol H2SO4 / 2 mmol NaOH = 2.9032695 mmol
Hence
[H2SO4]= n/V = 2.9032695 mmol / 32.42 mL = 0.08955 M
The answer to this question is [H2SO4] = 0.08955 M
Answer:
Electrons- 95
Protons- 95
Neutrons-146
Explanation:
An atoms is made up of three fundamental particles; electrons, protons and neutrons,
Americium belongs to the f block in the periodic table. It is an actinide element.
An atom of Am-241 contains 95 protons, 95 electrons and 146 neutrons.
Answer:
Explanation:
C = 49.48
H = 5.19
O = 16.48
N = 28.85
ratio of moles
= 49.48 / 12 : 5.19 / 1 : 16.48 / 16 : 28.85 / 14
= 4.123 : 5.19 : 1.03 : 2.06
= 4 : 5 : 1 : 2
so the empirical formula = C₄ H₅O N₂
Let molecular formula = ( C₄ H₅ON₂ )ₙ ,
n ( 48 + 5 + 16 + 28 ) = 119.19
97 n = 194.19
n = 2 ( approx )
molecular formula = C₈ H₁₀O₂ N₄