The most abundant isotope is Gz-83 because the average atomic mass of Gz is closer to 83.
The average atomic mass is defined as the weigthed mean of the isotopes.
The mass of the isotopes is 80, 81 and 83 uma, respectively.
As the average atomic mass (82.74uma) is closer to the atomic mass of Gz-83 than the mass of the other isotopes, you can interpretate that the most abundant isotope is Gz-83.
Learn more about average atomic mass in:
brainly.com/question/21536220
Answer:
Mass of H₂O is 3.0g
Explanation:
The reaction equation is given as:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Parameters that are known:
Mass of CO₂ used = 7.3g
Unknown: mass of water consumed = ?
Solution
To solve this kind of problem, we simply apply some mole concept relationships.
- First, we work from the known to the unknown. From the problem, we have 7.3g of CO₂ that was used. We can find the number of moles from this value using the expression below:
Number of moles of CO₂ = 
- From this number of moles of CO₂, we can use the balanced equation to relate the number of moles of CO₂ to that of H₂O:
6 moles of CO₂ reacted with 6 moles of H₂O(1:1)
- We can then use the mole relationship with mass to find the unknown.
Workings
>>>> Number of moles of CO₂ =?
Molar mass of CO₂ :
Atomic mass of C = 12g
Atomic mass of O = 16g
Molar mass of CO₂ = 12 + (2 x16) = 44gmol⁻¹
Number of moles of CO₂ =
= 0.166moles
>>>>>> if 6 moles of CO₂ reacted with 6 moles of H₂O, then 0.166moles of CO₂ would produce 0.166moles of H₂O
>>>>>> Mass of water consumed = number of mole of H₂O x molar mass
Mass of H₂0 = 0.166 x ?
Molar mass of H₂O:
Atomic mass of H = 1g
Atomic mass of O = 16
Molar mass of H₂O = (2x1) + 16 = 18gmol⁻¹
Mass of H₂O = 0.166 x 18 = 3.0g
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions. ( K, Cl)...