Answer:
In Newtonian mechanics, the gravitational energy possessed by a mass, because of the gravitational field produced by a second mass.
Explanation:
Altitude is the angle measured above the horizon
Answer:
h = 4.04 m
Explanation:
Given that,
Mass of a child, m = 25 kg
The speed of the child at the bottom of the swing is 8.9 m/s
We need to find the height in the air is the child is able to swing. Let the height is h. Using the conservation of energy such that,

Put all the values,

So, the child is able to go at a height of 4.04 m.
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:



here we will use the concept of Newton's III law
as per Newton's III law the impulse given to the ball is same as the impulse lost by the bat
So here we will say
impulse gain by the ball = impulse lost by the bat

given that


For ball the change in speed will be

now from above equation


so speed of bat will decrease by 6.72 mph