Answer:
v = 1.2 m/s
Explanation:
The wavelength of the waves is given as the horizontal distance between the crests:
λ = wavelength = 5.5 m
Now, the time period is given as the time taken by boat to move from the highest point again to the highest point. So it will be equal to twice the time taken by the boat to travel from highest to the lowest point:
T = Time Period = 2(2.3 s) = 4.6 s
Now, the speed of the wave is given as:

where,
v= speed of wave = ?
f = frequency of wave = 
Therefore,

<u>v = 1.2 m/s</u>
Answer:
Option C is the correct answer
Explanation:
Distance travelled by car during reaction time

The car stopped before hitting the animal by 
Distance travelled during deceleration is 
Hence by 
We have

Option C is the correct answer
Answer;
-Economy
The condition of a country’s economy depends on its people’s ability to exchange money for goods and services.
Explanation;
Economy is the state of a country or region in terms of the production and consumption of goods and services and the supply of money.
An economy encompasses all activity related to production, consumption and trade of goods and services in an area. An economy applies to everyone from individuals to entities such as corporations and governments.
There are four different types of economies; traditional economy, market economy, command economy and mixed economy. Each type of economy has it’s own strengths and weaknesses.
500 ml = 0.5 liters. that's what i'm getting
hope it helps
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)