I believe the answer is H for when you bounce it, it has stress when it hits the floor and then goes up giving it kinetic
Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory
Answer:
A) being influenced by equal amounts of gravity and air resistance.
Explanation:
B) slowing down because of an unbalanced force of air resistance.
False - if it was slowing down, then the velocity would go down.
D) on the ground and is not falling anymore.
False - This would be mistaken as the answer but it is not because if the person is not falling anymore the horizontal line should be at the x-axis, meaning that there is no more velocity.
C) accelerating because of an unbalanced force of gravity.
False - The line would otherwise be going up or down.
From the theory we know that:
c = λ / T
f = 1 / T
Where:
c = 3.
/ m (the speed of light)
λ is the wavelengh (in meters)
T is the period (in seconds)
f is the frequency (in Hz)
We were told that:
f = 7.30 .
And we want to find out the value of λ.
c = λ / T
c = λ . 1/T
Swaping 1/T = f
c = λ . f
λ = c / f
λ = 3 .
/ 7.30 . 
λ = 4.12
m
Response: 4.12
m = 412 nm
:-)
I think it’s the first option