Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,  , t=2 s. The final velocity is:
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
 
        
             
        
        
        
<u>Answer:</u>
The height of ramp = 124.694 m
<u>Explanation:</u>
Using second equation of motion,

From the question,
u = 31 m/s; s = 156.3 m, a=0
substituting values

t = 
= 5.042 s
Similary, for the case of landing
t = 5.042 s; initial velocity, u =0
acceleration = acceleration due to gravity, g = 9.81 
Substituting in 

h = 124.694 m
So height of ramp = 124.694 m
 
        
             
        
        
        
You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?
 
        
             
        
        
        
Answer:
The statement "The magnetic field of a magnet comes out of the north pole and goes into the south pole" is imprecise
Explanation:
This is because the zero divergence equation (∇ · B = 0 ) is valid for any magnetic field, even if it is time dependent rather than static. Physically, it means that there are no magnetic charges otherwise we would have ∇ · B ∝ ρmag instead of ∇ · B = 0. Consequently, the magnetic field lines never begin or end anywhere in space; instead they form closed loops or run from infinity to infinity.
 
        
             
        
        
        
<h3>Answer:</h3>
- 24.5 km/h
- 4 17/27 m/s
- 11/3 m/s²
<h3>Explanation:</h3>
1. The average speed is the ratio of total distance to total time:
... speed = distance/time = (92 km +55 km)/(3 h +3h) = (147 km)/(6 h)
... = 24.5 km/h
2. speed = distance/time = (125 m)/(27 s) = 4 17/27 m/s
3. a = ∆v/∆t = (15 m/s -4 m/s)/(3 s) = 11/3 m/s²