Answer:
<em>Weather forecasters often discuss the models they use to help predict the weather. ... Weather observations (pressure, wind, temperature and moisture) obtained from ground sensors and weather satellites are fed into these equations. The observations are brought into the models in a process known as data assimilation.</em>
Explanation:
<h2>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h2>
1) As can be seen from any 1H NMR chemical shift ppm tables, hydrogens which have δ values from 2ppm to 2.3ppm are hydrogens from carbon which is bonded to a carbonyl group. From this, we can conclude that our hydrogens belong to the type, but from 2 different alkyl groups because of 2 different signals.
2) So, one alkyl group is CH3 and second one can be CH or CH2.
3) If we know that ratio between two types of hydrogens is 3:2, it can be concluded that second alkyl group is CH2.
4) Finally, we don't have any other signals and it indicates that part of the compound which continues on CH2 is exactly the same as the first part.
The ratio remains the same, 3:2 ie 6:4
In a branched chain of amino acids
Answer:
0.752 J/g*K
Explanation:
The heat lost by the alloy (which is negative) must be equal to the heat gained by the water and the coffee cup:
-Qa = Qw + Qc
-ma*ca*ΔTa = mw*cw*ΔTw + C*ΔTc
Where, m is the mass, c is the specific heat capacity, C is the heat capacity of the coffee cup, ΔT is the change in temperature, a represents the alloy, and w the water.
The coffee cup has initial temperature equal to the water, then:
-30.5*ca*(31.1 - 95.0) = 49.3*4.184*(31.1 - 24.3) + 9.2*(31.1 - 24.3)
1948.95ca = 1465.20
ca = 0.752 J/g*K
The H⁺ ion concentration can be calculated from pH values using the following equation:
![pH=-log[H⁺]](https://tex.z-dn.net/?f=pH%3D-log%5BH%E2%81%BA%5D)
1.) Given pH = 2
Using the above equation, 2 = - log [H⁺]
Therefore, [H⁺] = 10⁻² mol/L
2.) Given pH = 6
Using the same equation, we have 6 = - log [H⁺]
Hence, [H⁺] = 10⁻⁶ mol/L
3.) Taking the ratio of [H⁺] for pH = 2 and pH = 6, we have
= 10⁴
So, there are 10,000 times more H⁺ ions in a solution of pH = 2 than that of pH = 6.