Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
Hmm, friction maybe? I guess it depends on how fast she stopped?
Answer:
mass and speed
Explanation:
the motion of an object depends on how fast it's travelling and also how much mass it has
Answer:
Total percent of magnesium in sample = 25.5%
Explanation:
Given:
Mass of magnesium = 24 gram
Mass of chlorine = 70 gram
Find:
Total percent of magnesium in sample = ?
Computation:
Total mass of sample = Mass of magnesium + Mass of chlorine
Total mass of sample = 24 gram + 70 gram
Total mass of sample = 94 gram
Total percent of magnesium in sample = [Mass of magnesium / Total mass of sample]100
Total percent of magnesium in sample = [24/94]100
Total percent of magnesium in sample = [0.255]100
Total percent of magnesium in sample = 25.5%
Answer:
[Cl⁻] = 0.016M
Explanation:
First of all, we determine the reaction:
Pb(NO₃)₂ (aq) + MgCl₂ (aq) → PbCl₂ (s) ↓ + Mg(NO₃)₂(aq)
This is a solubility equilibrium, where you have a precipitate formed, lead(II) chloride. This salt can be dissociated as:
PbCl₂(s) ⇄ Pb²⁺ (aq) + 2Cl⁻ (aq) Kps
Initial x
React s
Eq x - s s 2s
As this is an equilibrium, the Kps works as the constant (Solubility product):
Kps = s . (2s)²
Kps = 4s³ = 1.7ₓ10⁻⁵
4s³ = 1.7ₓ10⁻⁵
s = ∛(1.7ₓ10⁻⁵ . 1/4)
s = 0.016 M