Rain fall which is called run off
Answer:
The correct answer to the question is
B. It always decreases
Explanation:
To solve the question, we note that the foce of gravity is given by
where
G= Gravitational constant
m₁ = mass of first object
m₂ = mass of second object
r = the distance between both objects
If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have
= 
Therefore the gravitational force is halved. That is it will always decrease
Answer:
Resistance to electrical currents
Explanation:
Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.
Insulators have very high resistance and are used to protect us from the flow of electricity.
Twin type has less to do with what twins look like and more to do with how they formed.
Identical, or monozygotic, twins form when a single fertilized egg splits and develop as two babies in the uterus. Identical twins originate from the same combination of cells and have the same genetic origin. They are ALWAYS the same sex, two girls/two boys. They may look very similar and it may be difficult to tell them apart.
Fraternal, or dizygotic, twins are two individuals from the same pregnancy who from TWO SEPARATE eggs fertilized by TWO SEPARATE SPERM. The genetic similarity between fraternal twins is the same as any two siblings, about 50 percent. They can be boys, girls, or one of each.
Answer: the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Explanation:
Given that;
diameter of the mirror d = 1.7 m
height h = 180 km = 180 × 10³ m
wavelength λ = 500 nm = 5 × 10⁻⁹ m
Now Angular separation from the peak of the central maximum is expressed as;
sin∅= 1.22 λ / d
sin∅ = (1.22 × 5 × 10⁻⁹) / 1.7
sin∅ = 3.588 × 10⁻⁷
we know that;
sin∅ = object separation / distance from telescope
object separation =
sin∅ × distance from telescope
object separation = 3.588 × 10⁻⁷ × 180 × 10³
object separation =6.45 × 10⁻² m
then we convert to centimeter
object separation = 6.45 cm
Therefore the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm