Answer:
According to Kepler's 3rd law.
It states that the orbital period, T is related to the distance, r as:
T²
= 4
π²r³
/G M
where G is the universal gravitational constant = 6.673 × 10⁻¹¹ Nm²/kg²
Rearranging for M should give Jupiter's mass.
M =
4
π²r³/GT²
T= 1.77 days × 24 h/day × 60 min/h × 60 s/min = 1.53 × 10⁵ s
r = 4.22x10⁸ m
M = 4π² ((4.22 × 10⁸ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (1.53 × 10⁵ s)²)
M = 1.90 × 10²⁷kg
The mass of Jupiter is 1.90 × 10²⁷kg.
1.90 × 10²⁷kg
T= 7.16 days × 24 h/day × 60 min/h × 60 s/min = 6.19 × 10⁵s
r = 1.07x10⁹ m
M = 4π² ((1.07 × 10⁹ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (6.19 × 10⁵ s)²)
M = 1.90 × 10¹⁷kg
The mass of Jupiter is 1.90 × 10¹⁷kg.
THE RESULTS TO PART A and B ARE NOT CONSISTENT. The reason is because of the difference in radius of each satellites from Jupiter. i.e the farther away the moons, the smaller they become in space and the more the number of days to complete an orbit.
Yes.
Take the compound glucose.
C6H12O6 is its formula, and when combined with O2 (oxygen gas), it breaks down into carbon dioxide and water, which are simpler substances. Also, compounds can be broken down into distinguishable elements, which are the simplest unit.
Answer: The formula of Newtons second law of motion is F=MA so therefore it would be written like this Force = Mass X Acceleration
F = 5 x 2
F = 10 N
When a dielectric material is inserted between two plates of capacitor that are connected to a battery, you would observe that both the charge and the capacitance of the capacitor would change. This is due to the dielectric material which is able to transmit electric force.