Answer:
Explanation:
El impulso aplicado a la pelota produce una variación en su momento lineal.
J = m (V -Vo)
Conviene elegir positivo el sentido de la velocidad final.
J = 0,100 kg [40 - (- 20)] m/s = 6 kg m/s
Saludos Herminio
Answer:

Explanation:
We have given initial length of the steel guitar l = 1 m
Cross sectional area 
Young's modulus 
Force F = 1500 N
So stress 
We know that young's modulus 
So 

Now strain 


This is another time to look at Newton's 2nd law of motion:
Net Force = (mass) x (acceleration)
If the object is not moving, then its acceleration is certainly zero, and Newton's law looks like this:
Net Force = (mass) x (zero)
or Net Force = (zero) .
"Net Force = zero" means that if there ARE any forces acting on the object, then they add up to zero, and we call them "balanced" forces.
So the answer is '<em>yes</em>', and that's why.
Answer:
<h2>The pin's final velocity is 5m/s</h2>
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s