1. 100.67
2. 168.55
3. 2.747
So I’m not sure if 2 or 3 are right sorry
Answer:
Explanation:
So here's the thing . Sugar molecule is a molecular solid . It a relatively weak molecule
We all know the formula of glucose ( which is a sugar type molecule ) which is C12 H22 O 11 . This is basically bonded together by dipole dipole forces ( remember that this force of attraction is weak ) .on the other hand you have the solution ( which is usually water) .water is held by strong attraction forces known as hydrogen bonding .since this type of bonding is greater than dipole dipole forces .therefore when glucose is dropped in water . water is easily able to obercome the forces that are keeping the glucose molecule intact . therefore the molecule dissolves and breaks into pieces. Hope this helps
Answer:
Life science is alternatively known as biology, and physical science is subdivided into branches: physics, chemistry, astronomy and Earth science. These branches of natural science may be further divided into more specialized branches. But that is more writting to explain
Explanation:
Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.

3. Conducts electricity in aqueous solution.