If the container explodes there is no pressure, becuase all your gas has escaped its container, there for, you ain’t got no gas
Answer:
Explanation:
Given that :
The current I = 7.2 A
The length vector L = 2.2 m i
The force vector is = -2.6 j N
When L = 2.2 m i ; the
Force vector F = (2.6 i - 4.4 k) N
Compute the components of the magnetic field as follows:

Replacing 7.2 A for I ; -2.6 j N for F & 2.2 m i for L



However in y direction ; we have :



Hence, the component of magnetic field is as follows:

I think that the correct answer would be 2.
The molecules in the air are always creating pressure. Countless molecules collide into everything every second, creating a constant force. Before the air in the balloon is heated, the molecules inside are creating as much pressure as the molecules outside, meaning that the balloon stays at equilibrium and neither expands nor contracts. When they get heated, however, the inside molecules start moving with more force. They create more pressure, causing the balloon to expand outward until the pressure equalizes.
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
29.75 revolutions
Explanation:
The kinematic formula for distance, given a uniform acceleration a and an initial velocity v₀, is

This car is starting from rest, so v₀ = 0 m/s. Additionally, we have a = 9.2/9.7 m/s² and t = 9.7 s. Plugging these values into our equation:

So, the car has travelled 44.62 m in 9.7 seconds - we want to know how many of the tire's <em>circumferences</em> fit into that distance, so we'll first have to calculate that circumference. The formula for the circumference of a circle given its diameter is
, which in this case is 47.8π cm, or, using π ≈ 3.14, 47.8(3.14) = 150.092 cm.
Before we divide the distance travelled by the circumference, we need to make sure we're using the same units. 1 m = 100 cm, so 105.092 cm ≈ 1.5 m. Dividing 44.62 m by this value, we find the number of revs is
revolutions