Answer:

Explanation:
given,
turntable rotate to, θ = 5 rad
time, t = 2.8 s
initial angular speed = 0 rad/s
final angular speed = ?
now, using equation of rotational motion



α = 1.28 rad/s²
now, calculation of angular velocity



hence, the angular velocity at the end is equal to 3.584 rad/s
Answer:
The correct option is;
The atoms and molecules of the liquid water are moving, while the atoms and molecules of the glass are not moving
Explanation:
Matter that exist in the liquid or gaseous state consist of molecules that move freely about in the entire containing medium for gas, while the molecules move freely in the portion of the container occupied by the fluid in the case of liquid fluids
However, the molecules of a solid are fixed within the current shape of the solid and are only free to vibrate within a fixed location and the allow the passage of subatomic particles such as electrons
As such, the glass cup being a solid, consists of molecules fixed in space, while the liquid water consists of molecules which can translate within the portion of the volume of the glass filled with the water.
... the density of the liquid
... the volume of the submerged object
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.