The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
The change that will always result in an increase in the gravitational force between two objects is increasing the masses of the objects and decreasing the distance between the objects.
Answer:
A possible answer would be that chemical properties depend on phisical properties if and if only the phisical properties depend on the chemical ones ( see the laws of thermodinamics)
To increase it's size
Waxing is the opposite of waning, which is to decrease.
The correct answer is
<span>C) either the pressure of the gas, the volume of the gas, or both, will increase.
In fact, the ideal gas law can be written as
</span>

<span>where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
We can see that if the temperature T increases, then the term on the right in the equation increases, therefore the term on the left should increase as well. In order for this to be possible, at least one between p and V should increase, or also both of them. Therefore, the correct answer is C.</span>