Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s
Answer:
Option A - fail/ not fail
Explanation:
For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _fail______ and using the Maximum Shear Stress Theory the material will ___not fail_______
Answer:
(i) 169.68 volt
(ii) 16.90 volt
(iii) 16.90 volt
(iv) 108.07 volt
(v) 2.161 A
Explanation:
Turn ratio is given as 10:1
We have given that input voltage 
(i) We know that peak voltage is give by 
(ii) We know that for transformer 
So 

So peak voltage in secondary will be 16.90 volt
(iii) Peak voltage of the rectifier will be equal to the peak voltage of the secondary
So peak voltage of the rectifier will be 16.90 volt
(iv) Dc voltage of the rectifier is given by 
(v) Now dc current is given by 
Answer:
Technician A is correct
Explanation:
The neutral safety switch when bad must be replaced and not adjusted as suggested by technician B because if the neutral safety switch is bad the Engine might not crank when put in neutral but it will crank when put in park and this is very bad for the life of the Engine it is better to replace it. A test for a bad/faulty neutral safety switch will be required to ascertain the level of damage it might cause to the Engine and prompt replacement is essential as well. because the neutral helps to prevent the car from starting when it is already engaged in a gear position therefore protecting the car from sudden collisions