1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
2 years ago
11

How will the proposed study contribute to your career?*(quantity Surveying​

Engineering
1 answer:
Flauer [41]2 years ago
5 0

Answer:

PROPOSED STUDY CONTRIBUTES TO YOUR CAREER. Proposed study is essential for career growth. It contributes to our career in a great way. It <u>enhances leadership skills</u> and polish our skills making us more competent. It expand our horizons and opportunities. It gives us better understanding of things. We become able of developing professional relationships with our students as well as development sector which helps in future projects.

Hope this help!:)

You might be interested in
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
2 years ago
An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 40MPa. It has been dete
Nataly [62]

Answer:

Yes, fracture will occur

Explanation:

Half length of internal crack will be 4mm/2=2mm=0.002m

To find the dimensionless parameter, we use critical stress crack propagation equation

\sigma_c=\frac {K}{Y \sqrt {a\pi}} and making Y the subject

Y=\frac {K}{\sigma_c \sqrt {a\pi}}

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness, \sigma_c  is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

Y=\frac {K}{\sigma_c \sqrt {a\pi}}= \frac {40}{300\sqrt {(0.002*\pi)}}=1.682

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m

\sigma_c=\frac {K}{Y \sqrt {a\pi}}  and making K the subject

K=\sigma_c Y \sqrt {a\pi}  and substituting 260 MPa for \sigma_c  while a is taken as 0.003m and Y is already known

K=260*1.682*\sqrt {0.003*\pi}=42.455 Mpa

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material

6 0
3 years ago
Calculate the radius of gyration for a bar of rectangular cross section with thickness t and width w for bending in the directio
SVEN [57.7K]

Answer:

a)R= sqrt( wt³/12wt)

b)R=sqrt(tw³/12wt)

c)R= sqrt ( wt³/12xcos45xwt)

Explanation:

Thickness = t

Width = w

Length od diagonal =sqrt (t² +w²)

Area of raectangle = A= tW

Radius of gyration= r= sqrt( I/A)

a)

Moment of inertia in the direction of thickness I = w t³/12

R= sqrt( wt³/12wt)

b)

Moment of inertia in the direction of width I = t w³/12

R=sqrt(tw³/12wt)

c)

Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)

R= sqrt ( wt³/12xcos45xwt)

4 0
3 years ago
Which is the main material in a solar cell?
quester [9]
Crystalline silicon
hope this helps!! <3
5 0
2 years ago
What is a Wayfaring graphic?
KonstantinChe [14]

Answer:

ambages. pitiless or without compassion; cruel; merciless. winding, roundabout paths or ways.

Explanation:

6 0
3 years ago
Other questions:
  • What are the basic types of heat exchangers?
    9·1 answer
  • Select the correct answer.
    7·1 answer
  • A turbine operates at steady state, and experiences a heat loss. 1.1 kg/s of water flows through the system. The inlet is mainta
    6·1 answer
  • Current density is given in cylindrical coordinates as J = −106z1.5az A/m2 in the region 0 ≤ rho ≤ 20 µm; for rho ≥ 20 µm, J = 0
    13·1 answer
  • Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
    15·1 answer
  • Which of the following is a advantage of a chain and sprocket over a pulley and belt system?
    7·1 answer
  • A logic chip used in a computer dissipates 3 W of power in an environment at 120°F, and has a heat transfer surface area of 0.08
    11·1 answer
  • If Ori gives a friend three reasons for preferring soccer to basketball, that is an algorithm.
    14·2 answers
  • The structure of PF3(C6H5)2 is trigonal bipyramidal, with one equatorial and two axial F atoms which interchange positions when
    15·1 answer
  • g A smooth pipeline with a diameter of 5 cm carries glycerin at 20 degrees Celsius. The flow rate in the pipe is 0.01 m3/s. What
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!