This problem is providing us with a statement in which we need to figure out the word fitting in the blank. At the end, after analyzing the information, the word turns out to be colligative as show below:
<h3>Colligative properties.</h3>
In chemistry, colligative properties of solutions account for the behavior of a solution with respect to the pure solvent, to which a solute is added.
Among them, we have boiling point elevation, freezing point depression, vapor pressure lowering and osmotic pressure, which are all affected by the concentration of the solute but not by the identity of the solute.
In such a way, we conclude that the correct word that fits in the blank is colligative as shown below:
"Colligative properties depend on the concentration of a solute in a solution but not on the identity of the solute."
Learn more about colligative properties: brainly.com/question/10323760
<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K
The compound sodium carbonate is a strong electrolyte because it completely dissociates when placed in water into its component ions. The equation of the reaction can be expressed as:

The dissociation leads to the formation of sodium and carbonate ions with the latter held together by its internal covalent bond.
This is unlike weak electrolytes that do not dissociate completely in water or aqueous solutions. Only a small fraction of the solute exists as ions in the solution.
More on strong and weak electrolytes can be found here: brainly.com/question/3410548
<u>Answer:</u> The atomic weight of the second isotope is 64.81 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of atomic masses of each isotope each multiplied by their natural fractional abundance
Formula used to calculate average atomic mass follows:
.....(1)
We are given:
Let the mass of isotope 2 be 'x'
Mass of isotope 1 = 62.9 amu
Percentage abundance of isotope 1 = 69.1 %
Fractional abundance of isotope 1 = 0.691
Mass of isotope 2 = 'x'
Percentage abundance of isotope 2 = 30.9%
Fractional abundance of isotope 2 = 0.309
Average atomic mass of copper = 63.5 amu
Putting values in equation 1, we get:
![\text{Average atomic mass of copper}=[(62.9\times 0.691)+(x\times 0.309)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D%5B%2862.9%5Ctimes%200.691%29%2B%28x%5Ctimes%200.309%29%5D)

Hence, the atomic weight of second isotope will be 64.81 amu.
Answer:
3,2,5,1,4
Explanation:
A chemical synapse begins when an (3)<em>action potential reaches the axon terminal depolarizing the membrane</em> leading to the opening of the voltage-gated Na+ channels, this Na+ ions will then depolarize the presynaptic membrane, opening the voltage-gated Ca2+ channels. (2)<em>Calcium ions then will initiate a cascade entering the neuron </em>that will lead to the fusion of synaptic vesicles with the presynaptic membrane (5)<em>causing the releasing of neurotransmitters into the synaptic cleft.</em> (1)<em>These neurotransmitter will diffuse across the synaptic place in order to bind to the receptors on the postsynaptic membrane,</em> (4)<em>particulary into the ligand-gated channels, opening them.</em>
I hope you find this information useful and interesting! Good luck!