Answer:
I. dipole-dipole
III. dispersion
IV. hydrogen bonding
Explanation:
Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.
London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.
Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.
Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.
Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.
Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.
Answer:
The combination of oxygen with other substances to produce new chemical products is called <u>Oxidation</u>.
Explanation:
Oxidation reactions are defined as,
In terms of Inorganic chemistry:
(i) <u>Removal of Electrons: </u>
Example: Mg → Mg²⁺ + 2 e⁻
(ii) <u>Addition of Oxygen:</u>
Example: 2 Mg + O₂ → 2 MgO
In terms of Organic chemistry:
(i) <u>Addition of Electrons: </u>
Example: Cl₂ + 2 e⁻ → 2 Cl⁻
(ii) <u>Addition of Hydrogen:</u>
Example: H₂CCH₂ + H₂ → H₃CCH₃
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
To be able to write correctly the equilibrium expression of a reaction, we need to know the balanced reaction and the phases of the substances in the reaction. When substances are solid, pure liquid they are not included in the expression. We do as follows:
<span>4KO2(s) + 2H2O(g) = 4KOH(s) + 3O2(g)
K = [O2]^3 / [H2O]^2</span>
As we know that
P.E. = mgh
where,
P.E. = Potential energy of the object =?
m= mass of object= 3kg
g= acceleration due to gravity = 9.8 ms^-2
h = height between object and animal = 0 m
Then
P.E. = 3× 9.8 × 0 = 0 Joules or 0J
<em>Have a luvely day!</em>