Answer:
vertical load = 10 kN
Modulus of elasticity = 200GPa
Yield stress on the cable = 400 MPa
Safety factor = 2.0
Explanation:
Data
let L = 
= 3.35 m
substituting 1.5 m for h and 3 m for the tern (a + b)
= tan⁻¹(
)
= 45⁰
substituting 1.5 for h and 3 m for (a+ b) yields:
₂ = tan⁻¹ (
)
=25.56⁰
checking all the forces, they add up to zero. This means that the system is balanced and there is no resultant force.
Answer:
D) is due to an increase of the armature current.
Explanation:
Option D is correct because on the DC motor, when the load increases, it leads to an increase in the armature current.
The armature current then sets up a magnetic flux which opposes the main field flux. The net field flux gets reduced. It is at this point, the armature reaction occurs.
Armature reaction is seen as the effect of magnetic flux which is usually set up by an armature current. This occurs when there is the distribution of flux under the main poles.
There are two effects the armature flux causes on the main field flux.
1. The main field flux is distorted by the armature reaction.
2. The magnitude of the main field flux is reduced by the armature flux.
Answer:
The preferred steel type for W-shapes is structural steel and the its preferred ASTM designation is ASTM A992.
Explanation:
The ASTM A992 is a structural steel and it's the most available for w-shapes; besides its availabilty, its ductility improvements makes it the preferred choice; other common designations for this shapes are ASTM A572 Grade 50,0r ASTM A36, but this designations aren't as available as ASTM A992, and it has to be confirmed prior to their specification.
Answer:
A) 11.1 ms
B) 5.62 Ω
Explanation:
L ( inductance ) = 10 mH
Vcc = 14V
<u>A) determine the required on time of the switch such that the peak energy stored in the inductor is 1.2J </u>
first calculate for the current ( i ) using the equation for energy stored in an inductor hence
i =
----- ( 1 )
where : W = 1.2j , L = 10 mH
Input values into equation 1
i = 15.49 A
Now determine the time required with expression below
i( t ) = 15.49 A
L = 10 mH, Vcc = 14
hence the time required ( T-on ) = 11.1 ms
attached below is detailed solution
B) <u>select the value of R such that switching cycle can be repeated every 20 ms </u>
using the expression below
τ =
---- ( 2 )
but first we will determine the value of τ
τ = t-off / 5 time constants
= (20 - 11.1 ) / 5 = 1.78 ms
Back to equation 2
R = L / τ
= (10 * 10^-3) / (1.78 * 10^-3)
= 5.62 Ω
Answer:
if you are speaking of the acronym then Engineering uses science and mathematics to solve everyday problems in society