Answer:
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Explanation:
Each wafer is classified as pass or fail.
The wafers are independent.
Then, we can modelate X : ''Number of wafers that pass the test'' as a Binomial random variable.
X ~ Bi(n,p)
Where n = 3 and p = 0.6 is the success probability
The probatility function is given by :

Where
is the combinatorial number

Let's calculate f(x) :




For the cumulative distribution function that we are looking for :



The cumulative distribution function for X is :
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Answer:
1 to 9 mph over the limit: $50 (no warnings issued) 10 to 14 mph over: $200. 15 to 19 mph over: $300
Explanation:
Answer:
how many people were asked though
Explanation:
Answer:
Power output, 
Given:
Pressure of steam, P = 1400 kPa
Temperature of steam, 
Diameter of pipe, d = 8 cm = 0.08 m
Mass flow rate, 
Diameter of exhaust pipe, 
Pressure at exhaust, P' = 50 kPa
temperature, T' = 
Solution:
Now, calculation of the velocity of fluid at state 1 inlet:




Now, eqn for compressible fluid:

Now,




Now, the power output can be calculated from the energy balance eqn:


