Answer:
The emf, electric field and the current in the wire are 10 V, 3.57 V/m and 1.43 A.
Explanation:
Given that,
Resistance = 7 ohms
Length = 2.8 m
Time t =0.2
We need to calculate the change in magnetic flux
Using formula of induced emf

Put the value into the formula


We need to calculate the electric field in the wire
Using formula of electric field



We need to calculate the current in the wire,
Using formula of ohm's law


Put the value into the formula


Hence, The emf, electric field and the current in the wire are 10 V, 3.57 V/m and 1.43 A.
Is this a book and most likely because the were cute
1.Record her observation with the time it was hot.
2. Gather info about the pavement and its surroundings. Find out what it's made of and what its temp. is at different times of the day.
3. Come up with a hypothesis about why it is hot.
4. Design an experiment to test the hypothesis. If she thinks the Sun is responsible (which she should b smart enough to know), keep it covered during the day time and check it's temp.
5. Come up with a conclusion. If her hypothesis is not supported, design a new experiment or gather more info.
Answer:
See explanation
Explanation:
Notice that the condenser section includes both the hot water and space heater and station (3) is specified as being in the Quality region. Assume that 50°C is a reasonable maximum hot water temperature for home usage, thus at a high pressure of 1.6 MPa, the maximum power available for hot water heating will occur when the refrigerant at station (3) reaches the saturated liquid state. (Quick Quiz: justify this statement). Assume also that the refrigerant at station (4) reaches a subcooled liquid temperature of 20°C while heating the air.
Using the conditions shown on the diagram and assuming that station (3) is at the saturated liquid state
a) On the P-h diagram provided below carefully plot the five processes of the heat pump together with the following constant temperature lines: 50°C (hot water), 13°C (ground loop), and -10°C (outside air temperature)
b) Using the R134a property tables determine the enthalpies at all five stations and verify and indicate their values on the P-h diagram.
c) Determine the mass flow rate of the refrigerant R134a. [0.0127 kg/s]
d) Determine the power absorbed by the hot water heater [2.0 kW] and that absorbed by the space heater [0.72 kW].
e) Determine the time taken for 100 liters of water at an initial temperature of 20°C to reach the required hot water temperature of 50°C [105 minutes].
f) Determine the Coefficient of Performance of the hot water heater [COPHW = 4.0] (defined as the heat absorbed by the hot water divided by the work done on the compressor)
g) Determine the Coefficient of Performance of the heat pump [COPHP = 5.4] (defined as the total heat rejected by the refrigerant in the hot water and space heaters divided by the work done on the compressor)
h) What changes would be required of the system parameters if no geothermal water loop was used, and the evaporator was required to absorb its heat from the outside air at -10°C. Discuss the advantages of the geothermal heat pump system over other means of space and water heating
Answer:
The pattern would spread out.
Explanation:
The fringe width is given by the relation
fringe width = λ L / D where λ is wavelength of light used, L is distance of wall from the source of light and D is slit separation.
If we increase λ , fringe width will increase and therefore pattern will spread out .