The answer is b becoz it meets growing demands of the country
Answer:
182.9 Volts
Explanation:
R = resistance of the resistor = 50 Ω
C = capacitance of the capacitor = 200 μF = 200 x 10⁻⁶ F
L = Inductance of the inductor = 120 mH = 0.12 H
f = frequency = 60 Hz
Capacitive reactance is given as
X = (2πfC)⁻¹
X = (2(3.14) (60) (200 x 10⁻⁶))⁻¹
X = 13.3 Ω
Inductive reactance is given as
X' = 2πfL
X' = 2(3.14) (60) (0.12)
X' = 45.2 Ω
Impedance of the circuit is given as
z = √(R² + (X' - X)²)
z = √(50² + (45.2 - 13.3)²)
z = 59.31 Ω
V = rms emf of the source = 240 Volts
rms voltage across the inductor is given as
V' = V z⁻¹ X'
V' = (240) (59.31)⁻¹ (45.2)
V' = 182.9 Volts
Answer:
I = 20 A
Explanation:
The question says that, "A load of 6,000 C is conducted through a cross section in 5 minutes. Determining-if a current is not correct, we will find the value of?"
We have,
Charge, q = 6,000 C
Time, t = 5 minutes = 300 s
We need to find the current. We know that, the charge flowing per unit time is equal to current. So,

So, the current flowing through the circuit is 20 A.
Joules
Watts
Kilocalories
BTU
Electron volt
I can't remember any others. Hope that's enough : )