I believe it is the Medial Temperal Lobe. It is part of the brain<span> known as the limbic system, which includes the hippocampus, the amygdala, the cingulate gyrus, the thalamus, the hypothalamus, the epithalamus, the mammillary body and other organs, many of which are of particular relevance to the processing of </span>memory<span>.</span>
A molecule that can h-bond will not always necessarily and does not have guarantee to have a higher boiling point than one than cannot have h-bond.
we can take an example of Pentan-2-one that cannot h-bond but instead of this it has a high boiling point that is 102.3 °C, while propan-1-ol can h-bond but it has a boiling point of 97.2°C, that is lower than the boiling point of Pentan-2-one.
The answer would be uranium and thorium. When an alpha ejects a particle, it will create a new atom. So, when uranium ejects an alpha particle, it will produce thorium. They call this process as the alpha decay. Alpha decay often happens on atoms that are abundant nuclei such as uranium, radium, and thorium.
A weirdly worded question. That chemical formula is of glucose which is a carbohydrate as it consists of carbon, oxygen and hydrogen atoms and is a monosaccharide (simple sugar). It had 6 carbon atoms
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 