10 atoms in total
4 atoms of H
4 atoms of O
2 atoms of Zn
Hope this helps :)
Answer : The incorrect option is, The most of the mass of the atom comes from the electron cloud.
Explanation :
There are three basic particles of an atom which are neutrons, protons and electrons.
The nucleus which is present in the center of an atom that contains the neutrons and the protons. The protons are positively charged and neutrons has no charge.
The outer region of an atom contains the electrons and the electrons are negatively charged.
As per given options, the statement which is the most of the mass of the atom comes from the electron cloud is incorrect statement because the most of the mass comes from the nucleus in which protons and neutrons are present.
Answer:
When you open the bottle, there is a dramatic decrease in pressure over the liquid, so the CO2 starts to leave the liquid very rapidly, causing the mass exodus of gas, or "explosion" of bubbles. This also explains why soda goes flat.
Explanation: HOPE THIS HELPS YOU..
The molar mass of the protein is 45095 g/mol.
The mass of a sample of a chemical compound divided by the quantity, or number of moles in the sample, measured in moles, is known as the molar mass of that compound.
The expression of molar mass of protein is
M₂ = (W₂/P) (RT/V)
Given;
W₂ = 1.31g
P = 4.32 torr = 5.75 X 10⁻³ bar
R = 0.083 Lbar/mol/K
T = 25°C = 298.15 K
V = 125 ml = 0.125 L
Putting all the values in the above formula
M₂= (1.31 g/5.75 X 10⁻³ bar) X (0.083 Lbar/mol/K X 2)/0.125 L)
M₂ = 45095 g/mol
Thus, the molar mass of the protein is 45095 g/mol.
Learn more about the Molar mass with the help of the given link:
brainly.com/question/22997914
#SPJ4
Equation: 2H₂ + O₂ → 2H₂O
Now, Given mass of Oxygen = 192 g
Molar mass of Oxygen = 16 g/mol
No. of moles in Oxygen = 16/192 = 0.0833
Now, for every mole of Oxygen, 2 mole of Hydrogen will form,
so, Number of moles of Hydrogen = 0.0833 * 2 = 0.167
Given mass = Number of Moles * Molar mass
Given mass = 0.167 * 2
m = 0.33 g
In short, Your Answer would be: 0.33 g
Hope this helps!