The structure of the alkyl bromides used in a malonic ester synthesis of ethyl 2-methyl-4-pentenoate are as drawn in the attached image.
<h3>Ethyl 2-methyl-4-pentenoate by Malonic ester synthesis.</h3>
The malonic ester synthesis is a chemical reaction characterized by the alkylation of diethyl malonate or a similar ester of malonic acid at the carbon alpha (directly adjacent) to both carbonyl groups, and subsequently converted to a substituted acetic acid.
Hence, it follows from the structure of Ethyl 2-methyl-4-pentenoate that the alkyl bromides used are Ethyl bromide and methyl bromide.
Read more on Malonic ester synthesis;
brainly.com/question/17237043
<h3>Answer:</h3>
When a solute is added to a solution, it remains homogeneous because the solute is soluble in given solvent.
<h3>Explanation:</h3>
Homogeneous mixtures, also called true solutions are those mixtures in which the components proportions are same throughout in any given sample. For example, the mixture of table salt (NaCl) and water. When the solution is unsaturated and further NaCl is added to it, it will dissolve the NaCl because the saturation point is still not reached. Remember, as "<em>Like Dissolves Like</em>" NaCl being polar in nature will interact with water molecules and will dissociate into Na⁺ and Cl⁻ ions surrounded by δ- O and δ+ H atoms of water molecules.
<h3>Conclusion:</h3>
In order to form a Homogeneous mixture the solution must be unsaturated, solvent must have affinity for incoming solute particles and the size of solute should be equal to 1 Â (Angstrom).
The answer is false because it goes in a full 360 degree circle
Explanation:
As per the Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
Hence, according to this law the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
..........(1)
..............(2)
The final reaction is as follows:
.............(3)
Therefore, adding (1) and (2) we get the final equation (3) and value of
at 298 K will be as follows.
=
+
= -314 kJ + (-80) kJ
= -394 kJ
Thus, we can conclude that
at 298 K for the given process is -394 kJ.
The answer to this question is HBr