Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
a. mol O₂=0.5
b. volume O₂ = 25 cm³
c. i. the total volume of the two reactants = 75 cm³
c. ii. the volume of nitrogen dioxide formed = 50 cm³
<h3>Further explanation</h3>
Reaction
2NO(gas) + O₂(gas) ⇒ 2NO₂ (gas)
a.
mol NO = 1
From the equation, mol ratio NO : O₂ = 2 : 1, so mol O₂ :

b.
From Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
Because mol ratio NO : O₂ = 2 : 1, so volume O₂ :

c.
i. total volume of reactants : 25 cm³+ 50 cm³=75 cm³
ii. the volume of nitrogen dioxide formed :
mol ratio NO : NO₂ = 2 : 2, so volume NO₂ = volume NO = 50 cm³
Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.
Answer:
We can Interprete it as 1mole of Sodium Chloride and 1mole of Silver Nitrate React to Produce
1Mole of Silver Chloride and 1Mole of Sodium Nitrate