Answer:
Explanation:
Since the sled plus passenger moves with constant velocity , force applied will be equal to frictional force. Let the force applied be F
a ) Frictional force = μ R = F cosφ
R = mg - F sinφ
μ(mg - F sinφ) = F cosφ
μmg = F (μsinφ+cosφ)
F = μmg / (μsinφ+cosφ)
Work done
= F cosφ x d
= μmg x cosφ x d / (μsinφ+cosφ)
b )Work done
= 0.13 x 52.3 x 9.8 cos36.7 x 21.8 / ( 0.13 sin36.7 +cos36.7)
= 1164.61 / .87946
1324.23 J
c ) work done on the sled by friction
= - (work done by force)
= - μmg x cosφ x d / (μsinφ+cosφ)
d ) work done on the sled by friction
= - 1324.23 J
Answer:
There were many examples of this. One of the most well-known not reversible reaction is a precipitation reaction, in which an insoluble solid is formed from two aqueous solutions. An example is the reaction between silver nitrate and sodium chloride which forms a silver chloride precipitate.
Answer:
Option e
Explanation:
The Law of Universal Gravitation states that every point mass attracts every other point mass in the universe by a force pointing in a straight line between the centers-of-mass of both points, and this force is proportional to the masses of the objects and inversely proportional to their separation This attractive force always points inward, from one point to the other. The Law applies to all objects with masses, big or small. Two big objects can be considered as point-like masses, if the distance between them is very large compared to their sizes or if they are spherically symmetric. For these cases the mass of each object can be represented as a point mass located at its center-of-mass.
The same force is applied to both the balls.
Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
Answer:
3,333.33 /sec
Explanation:
frequency = 1/period
= 1/0.0003 = 3,333.33 /sec