Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.
50% of the moon is always illuminated, however during it's quarter phase means that we only see a quarter of what's really lit up. So it LOOKS like the moon is only 25% lit and 75% dark, it's truly 50/50. We only see that 25% since we can see it from one angle.
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
Answer:
Subcategories: Ice field
Explanation:
Glacier ice is blue because the red (long wavelengths) part of white light is absorbed by ice and the blue (short wavelengths) light is transmitted and scattered. The longer the path light travels in ice, the more blue it appears.