<u>Answer:</u>
1. A graph is defined as <em>" A Diagram represents a system of connections or interrelations among two or more things by a number of different dots, lines etc".</em>
2. In simple words <em>"Graph is a representation of any object or a physical structure by dots, lines, etc.</em>
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
The representation of this problem is shown in Figure 1. So our goal is to find the vector

. From the figure we know that:

From geometry, we know that:

Then using
vector decomposition into components:

Therefore:

So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector

, that is:
</span>

Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.
Answer:
why do people hate on people and hate country people. are you country
because they only think about. themselves and they also think that they are always right .
it's my point of view
hope it is helpful to you