Answer:
The answer to your question is: The first option is correct.
Explanation:
From the data given, we conclude that as the amount of salt increases, the boiling point of water increases.
Options
If salt is added to water, the water will boil at a higher temperature This is the hypothesis for the experiment.
Salt makes water boil. This statement is not true.
If water is boiling, it must have salt added to it. This statement is incorrect, it is not the goal of the experiment.
If salt is added to water, the water will get cloudy There is not evidence of that from the information given.
Answer:
glycerol-3-phosphate, ADP, H⁺
Explanation:
The reaction of converting glycerol to glycerol-3-phosphate which makes is unfavorable and is coupled with the second reaction which involves conversion of ATP to ADP which is high energetically favorable.
Reaction 1: Glycerol + HPO₄²⁻ ⇒ Glycerol-3-phosphate + water
Reaction 2: ATP + H₂O ⇒ ADP + HPO₄²⁻ + H⁺
The coupled reaction of both the reactions become favorable. Thus, the overall coupled reaction is:
<u>Glycerol + ATP ⇒ Glycerol-3-phosphate + ADP + H⁺</u>
The net products are = glycerol-3-phosphate, ADP, H⁺
The mass of any substance will remain the same regardless of its state of matter. Using water as an example, its volume increases when it is boiled to a gas or when it is frozen from a liquid state to the solid state ice. The volume and temperature will change as it moves through the states of matter, however the amount of individual molecules of oxygen and hydrogen that form water will remain the same and this constitute mass.
Doubling the amplitude of a wave means that you increase the energy of a wave factor of quadrupling