<span>In abstract algebra and formal logic, the distributive property of binary operations generalizes the distributive law from elementary algebra. In propositional logic, distribution refers to two valid rules of replacement. The rules allow one to reformulate conjunctions and disjunctions within logical proofs.</span>
Answer: 0.1457
Step-by-step explanation:
Let p be the population proportion.
Given: The proportion of Americans who are afraid to fly is 0.10.
i.e. p= 0.10
Sample size : n= 1100
Sample proportion of Americans who are afraid to fly =
We assume that the population is normally distributed
Now, the probability that the sample proportion is more than 0.11:
![P(\hat{p}>0.11)=P(\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}>\dfrac{0.11-0.10}{\sqrt{\dfrac{0.10(0.90)}{1100}}})\\\\=P(z>\dfrac{0.01}{0.0090453})\ \ \ [\because z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}} ]\\\\=P(z>1.1055)\\\\=1-P(z\leq1.055)\\\\=1-0.8543=0.1457\ \ \ [\text{using z-table}]](https://tex.z-dn.net/?f=P%28%5Chat%7Bp%7D%3E0.11%29%3DP%28%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%3E%5Cdfrac%7B0.11-0.10%7D%7B%5Csqrt%7B%5Cdfrac%7B0.10%280.90%29%7D%7B1100%7D%7D%7D%29%5C%5C%5C%5C%3DP%28z%3E%5Cdfrac%7B0.01%7D%7B0.0090453%7D%29%5C%20%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%20%5D%5C%5C%5C%5C%3DP%28z%3E1.1055%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1.055%29%5C%5C%5C%5C%3D1-0.8543%3D0.1457%5C%20%5C%20%5C%20%5B%5Ctext%7Busing%20z-table%7D%5D)
Hence, the probability that the sample proportion is more than 0.11 = 0.1457
Answer:
I think it is C
Step-by-step explanation:
If I'm wrong try B
The right answer for the question that is being asked and shown above is that: "180 - line." Tanisha cut a triangle with angles of 62°, 30°, and 88° in three pieces so that each piece had one angle of the triangle.She arranged the three angles <span>connected together such that the three corners of the triangle were all touching.</span><span> </span>
Answer is option C
Mr. Jones jogs the same route each day. The amount of time he jogs is inversely proportional to his jogging rate.

k is the constant of proportionality
We check with each option and identify which option gives us same K value
(a) 4 mph for 2.5 hours and 6 mph for 3.75 hours
so k = 10
so k = 22.5
K values are not same
(b) 3 mph for 2 hours and 4.5 mph for 3 hours
so k = 6
so k = 13.5
K values are not same
(c) 4 mph for 2.5 hours and 5 mph for 2 hours
so k = 10
so k =10
K values are same .
Answer is option C