Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Answer:
Lightening of the table lamp
Explanation:
Energy has a different form of energy. In physics, the capacity of the form of energy is work. The energy can exist in the form of thermal, potential, kinetic, chemical and electrical, and nuclear. There are other forms of energy such as work and heat.
The energy is designated according to the nature of the objects. So that when heat transferred it has been changed into thermal. All the forms of energy are related to the motion of an object. Energy can neither destroyed or created.
Answer:
A related type of beta decay
Explanation:
Answer:
The mass number 204 – 82 protons = 122 neutrons
Explanation:
Hope this helps!
Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition

in this case we know the speed of the runner

The radius "r" will be the distance from the runner to the center of the track



The answer is the last option