In the blank should go of friction.
-17.555m/s
first I found the time it took for jacks stone to reach the bottom, using the formula vf = vi + at, vf and vi are final and initial velocities.
then i found the velocity at 6.6m using vf^2 = vi^2 + 2ad
and I found the time it took to get to 6.6m, so that I knew how long Jill waited to throw her stone, I used the formula d = t(vi+vf)/2, then i done total time - the time she waited, to get the time it took for there stones to hit the ground at the same time.
then to find the initial velocity of her throw I used the formula d = vit + (at^2)/2
Explanation:
ij jdjcjxjjdjnndnxnsmxnjxjebxnc
Chemical phenomenon by virtue of which a body or compound is transformed by the action of an oxidant
Answer: D. 5cm
Explanation:
Given the following :
Focal length (f) = - 6.0 cm
Height of object = 15.0cm
Distance of object from mirror (u) = 12.0cm
Height of image produced by the mirror =?
Firstly, we calculate the distance of the image from the mirror.
Using the mirror formula
1/f = 1/u + 1/v
1/v = 1/f - 1/u
1/v = 1/-6 - 1/12
1/v = - 1/6 - 1/12
1/v = (- 2 - 1) / 12
1/v = - 3 / 12
v = 12 / - 3
v = - 4
Using the relation :
(Image height / object height) = (- image distance / object distance)
Image height / 15 = - (-4) / 12
Image height / 15 = 4 / 12
Image height = (15 × 4) / 12
Image height = 60 / 12
Image height = 5cm