Answer:
- Option <u>B </u>is correct i.e. <u>2</u><u>1</u>
Step-by-step explanation:
In the question we're provided with an equation that is :
And we are asked to find the solution for the equation .
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
<u>
</u>
Multiplying by 7 on both sides :

On further calculations , we get :

- <u>Therefore</u><u> </u><u>,</u><u> </u><u>solution</u><u> </u><u>for</u><u> equation</u><u> </u><u>is </u><u>2</u><u>1</u><u> </u><u>.</u><u>That </u><u>means</u><u> </u><u>option </u><u>B </u><u>is </u><u>the </u><u>correct</u><u> answer</u><u>.</u>
<u>Verifying</u><u> </u><u>:</u>
We are verifying our answer by substituting value of v in the equation given in question :

Putting value of v :

By dividing 21 with 7 , we get :



- <u>Therefore</u><u> </u><u>,</u><u> </u><u>our </u><u>answer</u><u> is</u><u> valid</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
<h3>
Answer: Choice A</h3>
y axis, x axis, y axis, x axis
============================
Explanation:
Reflecting an object over the y axis twice will have it end up in its starting position. The same can be said for the x axis as well. It doesn't matter that the x axis reflections aren't grouped next to each other, nor the y. So in a sense, two x axis reflections undo each other, so do the y axis reflections, and we end up with the same image as shown in the diagram.
2x-7y=18 _(1)
-2x+4y=5
11y=23 , Y=23/11 sub in 1
2x-7×23/11=18
2x = 18×11 + 7×23
x = ( 198 + 161 )/2 = 359/2
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1